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Abstract
The Sukumar statement about the connection between the Green functions of
the supersymmetric pair of the Schrödinger Hamiltonians is generalized to the
case of the supersymmetric pair of the Dirac Hamiltonians.

PACS numbers: 02.30.Ik, 03.65.Ge, 03.65.Pm

1. Introduction

In recent times, a growing interest to the applications of supersymmetric quantum mechanics
[1] in different fields of theoretical and mathematical physics is noticed [2–6]. Recently, a
special issue of J. Phys. A: Math. Gen. 34 was devoted to research work in supersymmetric
quantum mechanics.

It is well known that supersymmetric quantum mechanics is basically equivalent to the
Darboux [7] transformation and the factorization properties of the Schrödinger equation
[3, 4, 8]. The Darboux transformation method for the one-dimensional stationary Dirac
equation is equivalent to the underlying quadratic supersymmetry and the factorization
properties of the Dirac equation [9, 10].

Though this method is widely used for the Schrödinger equation (see, e.g. [11, 12]), its
application to the Dirac equation is studied much less [13–15].

In the present paper, we generalize the Sukumar proposition [11] about the connection
between the Green functions of the supersymmetric pair of the Schrödinger Hamiltonians to
the case of the Dirac Hamiltonians.

In [11], Sukumar established the following integral relation:∫ b

a

[G̃(x, x,E) − G(x, x,E)] dx = 1

E − E0
, (1)
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between the Green functions G̃,G corresponding to the supersymmetric pair of the
Schrödinger Hamiltonians

H0 = − d2

dx2
+ V0(x), LH0 = H1L, H1 = H0 − d2 ln f

dx2
, (2)

L = d/dx − f ′/f, f = ψ0(x), H0ψ0 = E0ψ0, (3)

with the boundary conditions ψn(a) = ψn(b) = 0,H0ψn = Enψn.

Above ψ0 is the eigenfunction of initial (H0) problem without nodes.
We would like to stress that the construction of the Darboux transformed of the Schrödinger

Hamiltonian needs only one transformation function f such that H0f = Ef .
The construction of the Darboux transformation of the Dirac problem needs two spinor

functions f1, f2 such that

H0f1 = λ1f1, H0f2 = λ2f2, λ1 �= λ2. (4)

Thus, four scalar functions are involved in the problem that made this problem much more
complicated.

An another complication arises from the fact that the ‘potential’ of the Dirac problem
is a matrix function. It is unclear whether it is possible to establish some relation between
the Green functions of the initial and transformed Hamiltonians. But for the potential of the
especial matrix structure that is described below, this is possible. Below we will consider this
case.

The structure of the present paper is the following. In section 2, we give a new derivation
of the Sukumar trace formula for the Schrödinger case, different from the original one. In
section 3, we generalize this result for the Dirac problem with specific choice of the matrix
structure of the interaction Hamiltonian and discuss the obtained results.

2. The Sukumar trace formula

In this section, we give the new derivation of the Sukumar trace formula for the Schrödinger
case because the technique applied in this derivation is more easily transferred to the Dirac
case. The Sukumar problem is formulated as follows.

Let us have some initial Hamiltonian

H0 = − d2

dx2
+ V0(x), (5)

where V0(x) is such that the set of eigenfunctions {X} of the H0,

H0ψn = Enψn, (6)

contains the subset {Y } ⊂ {X} of this function such that ψn(a) = ψn(b) = 0, where
a, b(a < b) are some points on the real axis.

This subset of the eigenfunction {Y } forms a complete system in the subspace Y ⊂ X

of all functions φ(x) such that φ(a) = φ(b) = 0. The last means that all φ(x) from this
subspace Y can be presented in the form

φ(x) =
∑

n

cnψn(x). (7)

Let us introduce the pair of the solutions of the equation

H0φ1,2(x, E) = Eφ1,2(x, E) (8)
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such that φ1(b, E) = 0, φ2(a, E) = 0. They do not belong to the subspace Y ⊂ X.
Nevertheless, the following construction

G(x, y,E) = φ1(x, E)φ2(y, E)�(x − y) + φ2(x, E)φ1(y, E)�(y − x)

W
, (9)

W = φ1(x, E)φ′
2(x, E) − φ2(x, E)φ′

1(x, E) = const(E) (10)

obeys the inhomogeneous equation

(H0 − E)G(x, y,E) = δ(x − y) (11)

and boundary conditions

G(b, y,E) = 0, G(x, a,E) = 0, x, y ∈ (a, b). (12)

Thus, equation (9) represents the Green function of the Hamiltonian H0 in the subspace Y.
Let us perform the Darboux transformation

ψ → Lψ = ψ̃ = ψ ′ − f ′

f
ψ, H0f = λf, (13)

LH0 = H1L (14)

and construct the Green function of the transformed Hamiltonian:

G̃(x, y,E) = φ̃1(x, E)φ̃2(y, E)�(x − y) + φ̃2(x, E)φ̃1(y, E)�(y − x)

W̃
, (15)

W̃ = φ̃1(x, E)φ̃′
2(x, E) − φ̃2(x, E)φ̃′

1(x, E) = ˜const(E). (16)

It is simple to prove that

W̃ = (E − λ)W, φ̃1(E, b) = 0, φ̃2(E, a) = 0. (17)

According to the Sukumar proposition∫ b

a

[G̃(x, x,E) − G(x, x,E)] dx = 1

E − λ
. (18)

Let us prove this statement in the manner different from the one applied in [11].
It is evident that

G̃(x, x,E) = φ̃1(x)φ̃2(x)

(E − λ)W
. (19)

Using definition (13), we can rewrite φ̃1(x)φ̃2(x) as

φ̃1(x)φ̃2(x) ≡ F ′
1(x) − φ1(x)

f
F ′

2(x), (20)

F1(x) = φ1(x)

f (x)
F2(x),

F2(x) = f (x)φ′
2(x) − f ′(x)φ2(x).

(21)

Taking into account that the functions f and φ2 are the eigenfunctions of the initial
Hamiltonian H0 it is easy to prove that

−φ1

f
F ′

2 = (E − λ)φ1φ2 = (E − λ)WG(x, x,E). (22)
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From this observation it is followed that

G̃(x, x,E) = G(x, x,E) +
F ′

1(x)

(E − λ)W
. (23)

Thus, the following expression is valid:∫ b

a

[G̃(x, x,E) − G(x, x,E)] dx = 1

(E − λ)W
[F1(b) − F1(a)]. (24)

Using definition (21), we have

F1(x) = φ1(x)

f (x)
F2(x) = φ1(x)

(
φ′

2(x) − f ′(x)

f (x)
φ2(x)

)
(25)

= φ1(x)φ̃2(x) ≡ φ2(x)φ̃1(x) + W. (26)

From this consideration and the boundary properties (17) of the φ̃1,2(x), it is followed that

F1(b) − F(a) = W (27)

and ∫ b

a

[G̃(x, x,E) − G(x, x,E)] dx = 1

E − λ
, (28)

what is just the Sukumar trace formula.
This relation implies that the difference of the initial Green function and Darboux-

transformed one is finite even if the trace of one of these functions is infinite what is the
case, for instance, for oscillator Hamiltonian (pure discrete spectrum) or any Hamiltonian
with continuous spectrum [12]. In the first case (the oscillator Hamiltonian), the trace of the
difference has the simple form (pole term). The case of continuous spectrum is much more
complicated and has been discussed in detail in [12].

3. The Dirac problem

In some cases, the one-dimensional four-component Dirac equation admits the two-component
representation:

H0ψ(x) = Eψ(x), ψT (x) = (ψ1(x), ψ2(x)), (29)

H0 = iσ2∂x + σ3(m + S(x)) + σ1U(x) + V (x), (30)

where σ1,2,3 are the Pauli matrices and S(x), U(x) and V (x) are the real functions of x.
Such a Hamiltonian can, for example, describe the interaction with the external

electrostatic field �(x) of the spin one-half particle with the charge e, the anomalous atom
magnetic moment λ and the position-dependent mass m(x) = m + S(x).

In this case

V (x) = e�(x), (31)

U(x) = λ�′(x). (32)

The interaction with the external electrostatic field �(x) of neutral (e = 0) particle with
a fixed mass m(x) = const = m is described by Hamiltonian (30) with S(x) = V (x) = 0.

In this paper, we will deal only with this case because of its comparable simplicity. The
general case S(x) �= 0, V (x) �= 0 is much more complicated for the consideration and we
plan to discuss it in a separate paper.
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So, we look for the solution of the Dirac equation

H0ψ = Eψ, ψ = (ψ1, ψ2)
T , (33)

H0 = iσ2∂x + mσ3 + Uσ1 (34)

with the boundary conditions. These conditions can be of two types:

(i) ψ1(a, E) = ψ1(b, E) = 0, (35)

(ii) ψ2(a, E) = ψ2(b, E) = 0. (36)

Let us rewrite the Dirac equation in the component form:

ψ ′
2 + Uψ2 = (E − m)ψ1, (37)

−ψ ′
1 + Uψ1 = (E + m)ψ2. (38)

In what follows, it is essential that in the case (35) among other solutions of the Dirac equation
exist the especial solution of the form

ψ1(x) ≡ 0, ψ2(x) = exp

(
−

∫ x

U(x ′) dx ′
)

, E = −m, (39)

and in the case (36)

ψ2(x) ≡ 0, ψ1(x) = exp

(∫ x

U(x ′) dx ′
)

, E = m. (40)

First of all, consider the Dirac equation with the boundary conditions (35). This condition
chooses among all solutions of the eigenvalue problem (33) the subset of solutions with discrete
spectrum

H0ψ
(n) = Enψ

(n), ψ
(n)
1 (a) = ψ

(n)
1 (b) = 0. (41)

The solution

H0v = −mv (42)

belongs to this subset.
Let us denote by u the solution of the system of equations (37) and (38) with the eigenvalue

E that is one of the neighboring on E = −m. Thus, we have two possibilities: E > −m and
E < −m. Denote the eigenvalue of the chosen solution by λ: h0u = λu.

Consider the transformation matrix

û =
(

v1 u1

v2 u2

)
, v1 ≡ 0, v2 = exp

(
−

∫ x

U(x ′) dx ′
)

(43)

and construct the Darboux transformation operator of the form

L = ∂x − ûxu
−1, ûx = ∂xû. (44)

Define the transformed Hamiltonian H1 with the help of intertwining relation

LH0 = H1L. (45)

It can be proved [9] that

H1 = H0 + [iσ2, ûx û
−1] = iσ2∂x + λσ3 − (ln f )′σ1, (46)

where f = u1(x).
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If ψ(x) is the solution of (33), then ψ̃ = Lψ is the solution of the equation

H1ψ̃ = Eψ̃ (47)

with the same value of energy E.

With the help of a simple calculation, it is easy to obtain

ψ̃1 = ψ ′
1 − f ′

f
ψ1, f = u1, (48)

ψ̃2 = (E − λ)ψ1. (49)

Let us denote by ψ(L), ψ(R) the solution of the initial equation (33) that obeys the following
boundary conditions:

ψ
(L)
1 (a) = 0, ψ

(R)
1 (b) = 0. (50)

Then from equations (48) and (49) it is easily obtained that

ψ̃
(L)
1,2 (a) = 0, ψ̃

(R)
1,2 (b) = 0. (51)

Let us construct the Green functions of the initial (H0) and the transformed (H1) Hamiltonians.
These functions can be expressed in terms of the ψ(L), ψ(R) (for h0) and ψ̃(L), ψ̃(R) (for H1),
respectively,

G0(x, y,E) = ψ(R)(x)ψ(L)T (y)�(x − y) + ψ(L)(x)ψ(R)T (y)�(y − x)

W
,

W = ψ
(R)
1 (x)ψ

(L)
2 (x) − ψ

(L)
1 (x)ψ

(R)
2 (x) = const(E)

(52)

and similarly,

G1(x, y,E) = ψ̃(R)(x)ψ̃(L)T (y)�(x − y) + ψ̃(L)(x)ψ̃(R)T (y)�(y − x)

W̃
,

W̃ = ψ̃
(R)
1 (x)ψ̃

(L)
2 (x) − ψ̃

(L)
1 (x)ψ̃

(R)
2 (y) = (E − λ)(E + m)W.

(53)

Let us introduce the quantities

I0(x, E) = tr G0(x, x,E) = ψ
(L)
1 (x)ψ

(R)
1 (x) + ψ

(L)
2 (x)ψ

(R)
2 (x)

W
, (54)

I1(x, E) = tr G1(x, x,E) = ψ̃
(L)
1 (x)ψ̃

(R)
1 (x) + ψ̃

(L)
2 (x)ψ̃

(R)
2 (x)

W̃
. (55)

Now let us express the numerator of the I1(x, E) in terms of the functions ψ(L), ψ(R):

ψ̃
(L)
1 (x)ψ̃

(R)
1 (x) + ψ̃

(L)
2 (x)ψ̃

(R)
2 (x) = A + B, (56)

A =
(

ψ
′(L)
1 − f ′

f
ψ

(L)
1

)(
ψ

′(R)
1 − f ′

f
ψ

(R)
1

)
, (57)

B = (E − λ)2ψ
(L)
1 ψ

(R)
1 . (58)

Using the similar trick as above (see section 2), one can obtain

A = F ′
1 − ψ

(L)
1

f
F ′

2, (59)
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F1 = ψ
(L)
1

(
ψ

′(R)
1 − f ′

f
ψ

(R)
1

)
, (60)

F2 = f ψ
′(R)
1 − f ′ψ(R)

1 . (61)

Using the Dirac equations (37) and (38) in order to exclude the derivatives ψ(′R) and f ′ from
the expression for F2 and once more for the excluding derivatives from the expression for F ′

2
after simple but rather cumbersome calculations, one can obtain

−ψ
(L)
1

f
F ′

2 = (E2 − λ2)ψ
(L)
1 ψ

(R)
1 . (62)

As a result, we get

A + B = F ′
1 + 2E(E − λ)ψ

(L)
1 ψ

(R)
1 . (63)

Let us now consider the difference

	I = I1 − I0 = tr G1(x, x,E) − tr G0(x, x,E). (64)

With the use of (54) and (55), we have

	I = F ′
1

(E − λ)(E + m)W
+

(E − m)ψL
1 ψ

(R)
1 − (E + m)ψ

(L)
2 ψ

(R)
2

(E + m)W
. (65)

Again by the use of the Dirac equation for ψ(L,R), it is easy to obtain

(E − m)ψL
1 ψR

1 − (E + m)ψ
(L)
2 ψ

(R)
2 = (

ψ
(L)
1 ψ

(R)
1

)′ = F ′
3. (66)

Taking into account the identity

ψ
(L)
1 ψ

(R)
2 = ψ

(R)
1 ψ

(L)
2 + W (67)

and the boundary conditions

ψ
(L)
1 (a) = ψ

(R)
1 (b) = 0, (68)

it is easy to see that∫ b

a

F ′
3 dx = W. (69)

Let us briefly discuss the quantity

F1(x) = ψ
(L)
1

(
ψ

′(R)
1 − f ′

f
ψ

(R)
1

)
≡ ψ

(L)
1 ψ̃

(R)
1 . (70)

It can be rewritten as follows:

F1(x) = ψ
(L)
1 ψ

′(R)
1 − ψ

′(L)
1 ψ

(R)
1 + ψ

(R)
1 ψ̃

(L)
1 , (71)

that after excluding the derivatives from the last expression with the help of the Dirac equation
can be presented in the form

F1(x) = (E + m)W + ψ
(R)
1 ψ̃

(L)
1 . (72)

Taking into account this observation, it is easy to obtain∫ b

a

F ′
1 = (E + m)W. (73)

Combining (73) with (69), we obtain the final result:∫ b

a

[tr G1(x, x,E) − tr G0(x, x,E)] dx = 1

E − λ
+

1

E + m
. (74)
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In the case (36), the similar calculations lead to the relation:∫ b

a

[tr G1(x, x,E) − tr G0(x, x,E)] dx = 1

E − λ
+

1

E − m
. (75)

This is the generalization of the Sukumar trace formula for the Dirac case, which takes into
account the above restriction V (x) = S(x) = 0.

It can be supposed that in the case V (x) �= 0, S(x) �= 0 the trace formula reads∫ b

a

[tr G1(x, x,E) − tr G0(x, x,E)] dx = 1

E − λ1
+

1

E − λ2
, (76)

where λ1,2 are defined by (4), i.e. for enough general case λ1 �= ±m.

The all said about the implication of the Sukumar result (1) (see the end of section 1) is
also valid in the case under consideration.

It is well known that the Green function of any Hamiltonian can be represented in the
form

G(x, y,E) = 
n

ψn(x)ψT
n (y)

En − E
, (77)

∫
tr(ψn(x)ψT

n (x)) dx = 1 (78)

(the so-called spectral representation).
If the integral

I =
∫

tr G(x, x,E) dx �= ±∞, (79)

then

I =
∑

n

1

En − E
(80)

and the Sukumar and our results are obvious, since they reflect the well-known observation
that the Darboux transformation delete, from the spectrum of the initial Hamiltonian, the terms
corresponding to the states that are used for the construction of the transformation matrix u.

In the case when |I | = ∞, this result is not trivial as the difference of two infinities is not
well define. Nevertheless, the use of alternative representations (9), (15), (52) and (53) for the
Green functions allows us to resolve this problem.
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